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A new formulation of the viscousfinviscid coupling, termed g-for-
mwifation, has been applied to the Burgers equation; the equation is
modilied in such a way that the viscous tenmns are neglected in
dependence of their magnitude. We show that the modified x-equation
can be solved on a single domain at a cost comparable to the cost of
solving the original equation, despite a nonlinearity being added.
Furthermore, we consider a domain decomposition methad, based on
the x-formulation, by splitting the original problem into an inviscid
Burgers equation and a x-viscous Burgers equation. The interface
between the subdomains is automatically adjusted by the proposed
method, vielding an optimal resolution of the boundary-layer
structure. & 1993 Academic Press, Inc,

1. INTRODUCTION

An important problem encountered in fluid dynamics is
the accurate calculation of the basic propertics, such as
pressure, velocity, and temperature, of a given flow field.
Treating the fluid as viscous and compressible, the equa-
tions o be solved are the Navier-Stokes equations. Even
with the simplification of incompressibility, or the assump-
tion of stcady flow, the numerical solution of the full
Navier-Stokes equations in domains of practical interest is
siill a difficult task. However, many problems of interest are
characterized by high Reynolds numbers. In these cases the
clfects of viscosity are confined to relatively thin shear fuycrs
in the ncighborhood of the surfaces bounding the flow and
their wakes: outside these regions the inviscid Euler cqua-
Hons are applicable. A fruitful approach is 1o make separule
calculations {or the external inviscid flow and the viscous
shear layers and to combine them to provide a composite
solution to the problem. This approach, known as viscous/
inviscid interaction [ 1], has given many important resuits,
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and it has reached an advanced state of development. Many
cfforts have been spent in organizing the two scparate parts
of the overall calculation to interact with cach other in an
iterative way so that convergence to the final solution is
achieved. Yhe most critical points of all these iterative
techniyues are their applicability in the presence of massive
separation and their extension to thrce-dimensional flow
fields.

A new lormulation of the problem of the viscous/inviscid
coupling has been recently proposed {sec [2]), under the
name of y-formulation. The main idea is to replace the
viscous terms in the Navier-Stokes equations by a non-
lingar function of the viscous terms themsclves; such a
function, termed y, coincides with the viscous terms if these
are sufficiently large and is zero if the viscous terms are
small. In other words, we neglect or retain the viscous lerms
by inspecting the size of the higher-order derivatives of the
solution itsell. This approach differs from the existing zonal
methods, which are based on an “a priori” decomposition of
the flow ficld into an inviscid part and a viscous one. The
x-formulation—which will be reviewed in some detail in
Section 2—yields a self-adaptive splitting of the domain into
“viscous” and “inviscid” regions; it guaraniees a smooth
transition of the solution between the viscous and inviscid
zones; finally, it is supported by a rigorous mathematical
theory, which accounis [or the previous fleatures (sce
[2,3]). The y-formulation can also handle the self-adaptive
coupling of other mathematical modcls, such as the rota-
tional/irrotational approximations of the Navier-Stokes
cquations (see [4]}.

In the original paper by Brezzi er al. {2], clear evidence
was given of the good accuracy of the y-formulation in
solving model problems with boundary and interior layers.
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However, the problem of finding an efficient implementa-
tion of the new formulation—with the aim of obtaining a
self-adaptive domain decomposition—was left open.

The present paper is the first of a series, in which the
numerical implementation of the x-formulation is discussed.
We address two main issues: (1) how to deal with the
non-linearity introduced in the equation by the y-function;
(ii) how to use the information provided by the y-function
to establish an optimal viscous/inviscid domain decom-
position. Concerning point (i), we observe that the
Navier—Stokes equations are themselves nen-linear; hence
many solution techniques which work for the original equa-
tions can be extended to our y-perturbed equations. For
steady problems, implicit time-advancing techniques with
lincarization around the solution at the previous time step
have proven successful in solving the fluid flow equations.
We explore such an approach for the y-formulation.
Coming to point (ii}, our goal is to solve the equations in
y-formutation only in a subdomain of the physical domain,
while the inviscld equations are solved in the remaining
region (the obvious assumption, here, is that solving the
inviscid equations is less expensive than solving the original
cquations). By definition, the inviscid region can be detected
by checking where the function y is identically zero. If such
a check is inserted into an iterative procedure, a self-
adaptive domain decomposition is obtained, starting from
a rough initial guess. During the iterative process, the
subdomains are adjusted according to the indications of
the y-function; the grids in each subdomain are adapted to
the new geometry, along the philosophy of the moving grid
approach (see, e.g,, [3]). The final decomposition (which
consists of non-overlapping subdomains) is “optimal,” in
the sense that the inviscid equations are solved precisely
where the viscous terms would be negligible, if the complete
equations had been solved instead. Thus, the domain
decomposition is tailored on the structure of the solution
itself,

Any domain-decomposition poses the problem of the
matching of the solutions at the interface between the sub-
domains. The matching conditions are easy to derive and
implement if the equations are of the same type on both
sides of the interface {e.g., Navier-Stokes/Navier—Stokes or
Euler/Euler coupling). The situation becomes much more
involved—both theoretically and computationally—if one
attemps to match different types of equations {e.g., Euler/
Navier—Stokes coupling) (for studies in this direction see,
e.g, [6]). Our approach is such that on the interface the
function y is zero; i.e., the solution is inviscid there. Hence,
we actually have to implement an Euler/Euler coupling,
which is a much easier task.

In the present paper, we confine our investigations to the
simple case of the Burgers equation, as a prototype of the
balancing of viscous and inviscid effects in fluid flows. In
subsequent papers, the Navier-Stokes equations will be
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considered. Preliminary recults about the application of the
y-formuiation to the Navier-Stokes equations written in
conical coordinates, are reported in Ref. [7]. For the sake
of clarity, the analysis of the adaptive algorithm is split into
three parts. After recalling the main mathematical proper-
ties of the y-formulation (Section 2), we propose and discuss
a solution technique for the y-equations in a single domain
(Section 3); next, we study the viscous/inviscid coupling
on a fixed domain decomposition (Section 4); finally, we
investigate several strategies for adjusting the decomposi-
tion in an interactive process (Section 5).

2. THE y-FORMULATION FOR THE
VISCOUS/INVISCID COUPLING

In this section, we introduce our self-adaptive formula-
tion of the viscous/inviscid coupling, using a very simple
convection—diffusion problem as a model for more complex
physical situations. Besides, we briefly recall some mathe-
matical properties of our formulation. They will provide a
theoretical justification to the approximation method
described in the next section.

Suppose we want to solve the following convection-
diffusion problem in the interval (0, L):

—vU . +al, +bU=g,
U0} = uy, UlLy=u,.

D<x<lA,
2.1

Here, v>> 0 is the (constant) viscosity coefficient, whereas
the coefficients g, b and the data g are supposed to be
smooth functions of x. It is known that, under the technical
assumption that —fa,+52=0 for all xe(0, L), problem
(2.1) has a unique solution, which is as smooth as allowed
by the smoothness of @, b, and g.

Now, we want to replace problem (2.1) by a modified
problem, in which the viscous term is neglected wherever it
is “small”. Precisely, we neglect it where the absolute value
of U, falls below a certain threshold, say, less than 0> 0.
To this end, choosing a second parameter o, ¢ >0, let us
introduce a continuous function y = ¥, ,: R — R such that

K if |s|=0+a0,

0 if 8| <4,

a strictly increasing

if d<is|<d+o.

x(s)= (2.2)

function

Throughout this paper we will invariably use a third-order
polynomial in the transition region é < |s| < + o, defined
by the condition that y be continuously differentiable in R
{sce Fig. 1), This may be advisable in the numerical
implementation of the y-problem.
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FIG. 1. Thefunction y(s){Eq. {2.2) with third-order pelynomial in the
transilion region), 6 = 1.5, o =0.5.

Then, let us consider the modified problem:

—vy(u ) tau +bu=g, O<x<[,

(2.3)
u(0) = uy, u(Ly=u,.

We define {2.3) to be the y-formulation of problem (2.1}
Note that u=u; , depends indeed vpon the parameters &
and ¢ through the function y; .. For the sake of simplicity,
we drop the indices in our notation. The parameter ¢ in
(2.2) has the only purpose of allowing x to take on all the
values between (t and & (or — & and 0). In other words, the
polynomial functions on the intervals é < |sj < d+ o vield a
continuous transition between the state y =0 (the inviscid
state) and the states y = + ( + o) (the fully viscous regime).
We will see in the sequel that this is precisely the key feature
of our formulation, which generates a smooth behavior of
the solution # of (2.3) at the viscous/inviscid interface.
Remarkably, the actual size of ¢ is virtually inessential in
our mathematical considerations. Indeed, one can even
take the limit as ¢ = 0 in {2.3) and still retain a perfectly
mathematically meaningful problem. We will briefly come
back on this point later on. Furthermore, let us note that
the particular form of the function y in the transition
region 8 < |5| € d + o, does not affect the properties of the
¥-solution, provided the requirement of strict monotonicity
is satisfied.

It has been proved in [2] that problem (2.3) possesses a
unique solution. Moreover, the solution u depends con-
tinuously upon the data in a suitable Sobolev norm [3],

ARINA AND CANUTO

i.e., the y-formulation leads to a well-posed problem in the
sense of Hadamard. The mathematical analysis relies upon
the two following properties of the function y: (i) y is a
“maximal monotone graph,” namely (in our situation) a
non-decreasing function defined for all s; (ii) ¥ coincides
with the linear function y(s) = s for |s| large encugh. Among
the mathematical properties of the solution of problem (2.3)
which have been established in [ 2], let us recall here the two
following ones:

max |U(x)—u(x)| < Cov; 2.4)
O<x< L
u has bounded second derivative (in the sense of
distributions) throughout the domain. (2.5)

Property (2.4) is an approximation result, which states
that the solution of the y-formulation deviates from the
solution of the original problem by at most a factor propor-
tional to the product Sv. The estimate provides a practical
guideline for the choice of the parameter § as a function of
the diffusion coefficient v. Recali that in problems where the
viscous/inviscid coupling is relevant, the physical viscosity
is usually quite small. Hence, (2.4) indicates that § is
allowed to range in a fairly wide interval, without affecting
the accuracy of the approximation. Statement (2.5) is a
smoothness result. It implies that u is continuously differen-
tiable all over the domain, in particular in the viscous/
inviscid interface region. This property is the distinguished
feature of the y-formuiation. Indeed, if we choose a priori
the position of the viscous/inviscid interface and solve the
full problem on one side of the interface and the inviscid
problem (v=20) on the other side, then we cannot expect
more than C°-continuity. With our formulation, the posi-
tion of the interface is not fixed in advance, and it is free
to adjust itself in order to produce the smoothest solution
of (2.3). How this occurs can be understood by locking
at the structure of the interface. The interval (0, L) can be
divided into three regions: the viscous region Q,., where
l%(v. )| =6+ 0 and the original equation is solved; the
inviscid region 2,, where yx{x..)=0 and we solve the
reduced equation without diffusion; finally, a transition
region €5, where 0<|y{u. ) <d+o or, equivalently,
4 < ju..| < &+ 0. Thus, the viscous/inviscid interface is not
reduced to a point, but it is a region, where |y(u,, )| takes on
all the values between 0 and 8. This explains why y has to
be defined as a monotonic, continuous function on R.

If we let ¢ — 0in {2.2), the graph of y, , tends to the graph
of the multivalued function ¥: R — subsets of R

0, |s] < 6,
061 s=3,
M= 501 s=-s 20
s, is| > 4.
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The corresponding problem has to be formulated in the
following form:

i, + bu —gE€ vz(uxx)s
u(0) =1, u(L)=u,.

O<x<L,
(2.7)

It means that the left-hand side of (2.7) is zero whenever
lu,. | <&, it equals vu,, whenever |u, . { > &, and it can take
any value between 0 and vé (resp., ~vd and 0) whenever
u,.= +¢& (resp. —9). By the results in [2], (2.7) is again
a well-posed problem. In this case the viscous/inviscid
mnterface is such that v, takes the constant value & (or —4)
there (i.e., u is a picce of paraboia), whereas |y(u,,)| varies
betweent 0 and & in a continuous way.

In the rest of this paper, we shall carry out our discussion
of the y-formulation on the non-linear model probiem:

_vU.tx+ (f(U))r= g,
U(0) = U(L) =0,

Qaox<I,
(2.8)

where /- R — R is a smooth, convex function, We assume
that the inviscid problem

(f(U)),=g
U{0)=0,

O<x< L,
‘ (29)

admits a smooth solution such that f(U)>0for 0 x < L.
In this case, the solution of {2.8) will exhibit a boundary-
layer at x = L. The y-formulation for problem (2.8) reads

—VX(”xx) + (f(u))x =&
w(0)=u(L}=0,

O<x<L,
{2.10)

where y is again given by (2.2). This problem enjoys
precisely the same mathematical properties described above
as the linear problem (2.3) (see [37]). If the cutoff parameter
4 is not exceedingly small, the solution of (2.10) will be such
that g(u,,) is zero in most of the interval (0, L). It will be
non-zero only in a neighborhood of x= L, where the
boundary condition generates a boundary layer.

3. A SOLUTION TECHNIQUE OF
THE y-PROBLEM

In order to solve the non-linear y-problem (2.10), a time-
dependent technique can be used. The solution is viewed as
the limit as ¢ — co of the solution u(x, t) of the following
problem:

u, ~ vyt + (f(u).= g,
w0, =u(l, )=0,
u{x, 0) = uo(x),

O<x<L,t>0,
>0, (3.1)

0<x< L.
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Introducing a time step A7 and setting " > u(n At), the
solution is advanced to "' = u({n + 1) 41), by one step of
the backward Euler scheme. Setting du"=u""'—u" we
approximate (3.1) by

ou + At{ —vy(ui )+ (" 1))} =0,
un+l(0)=un+l(L)=0_

O<x<lL,
(3.2)
Finally, we linearize the left-hand side of (3.2) around «".
In doing this, we assume that the y-function we are working
with is everywhere continuously differentiable; this is the

case for our choice of the y-function (see Fig.1). After
linearization, (3.2) can be written in -form as

ou" + A[{ —"X’(”ix)(éu"}n + (f«'(uﬂ) 5un)-‘t}

= —dt{ —vplu )+ (fw") — g},

6u™(0)y=du"(L)=0.

O<x< L,

(3.3)

Obviously, the present approach is far from being
efficient, since at each time iteration we retain the computa-
tional cost of solving a parabolic problem all over the
domain, even where the y-function is turned off. Indeed each
iteration is as expensive as an iteration of the same time-
dependent method applied to the original model problem
{2.8), while it is likely that the addition of the nonlincarity
¥ leads to an increase of the number of iterations to con-
verge to steady state. In the next sections, we will use a more
clever strategy, namely, splitting the problem into a simpler
hyperbolic probilem in most of the domain and a y-problem
in a small region containing the boundary layer. However,
the focus of the present section is twofold: (i) to investigate
the convergence behavior of the iterative procedure (3.3) in
the simplest case of spatial discretization; (i) to give
evidence of the good behavior of the y-solution with respect
to the exact solution of problem (2.8). In our investigations,
we choose the Burgers equation as a model of convection-
diffusion problem. Thus, f{x) = 1u? in (2.10), the interval is
(0, 1), and g(x) = x. Different values of v will be considered.

For the sake of simplicity, we use finite differences in
space on a uniform mesh of N+ 1 grid points throughout
the complete domain [0, 1]. In the next sections, we will
work with a grid clustered in the boundary layer region.
Diffusive terms are discretized by three-point centered
differences, whereas convective terms are discretized by
second-order upwind differences. The choice of N will
depend on v, in order to guarantee a good resolution of the
boundary layer structure.

As far as the choice of the parameter A¢ is concerned,
recall that we are interested in solving the steady problem
{2.10), not in representing faithfully the time evolution of
the solution of probiem (3.1}, Hence, as frequently occurs in
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TABLE ]

Accuracy of the Solution of Problem (2.10} for Different Values of ¢

v N 8 o n-it fluf v —unl, 25— twll s %, o= ticx 2 Nk v — tea e
10-2 200 1.0 20 18 047998 10—° 0.15820 103 0.38913 1077 0.88042 102
1.0 1.0 20 0.2732710°° 0.11827 1073 0.39195 107 0.87749 102

1.0 05 19 0.19384 10* 0.99016 104 0.39334 107 0.87607 102

1.0 02 20 0.14655 10~° 0.85605 10—+ 0.39432 107 0.87509 107

the computations of steady problems [8], we think of A
as a “pseudo-time”, which may act as an acceleration
parameter of the iterative method (3.3). Whenever we
are allowed to choose a very large At, we are essentially
using Newton’s method applied to problem (2.10), getting
local quadratic convergence. However, in many cases, an
arbitrarily large At cannot be chosen. The iterative method
may converge to a “wrong” solution (for instance, a non-
physical solution, in the case of the Navier—Stokes equa-
tions), or it may fail to converge. The latter situation was
indeed encountered when we attempted to solve problem
(2.10) by the plain Newton method. The non-linearity of the
¥-function leads to the appearance of periodic cycles when
¢ and /o exceed critical values. We found that convergence
could still be achigved by choosing a sufficiently small A¢.
However, the number of iterations was usually very large
and quite sensitive to the choice of Ar. So, we resorted to a
different, imore effective strategy: keeping A7 large and back-
tracking along the direction defined by du" whenever a
prescribed convergence criterion was not satisfied. More
precisely, we adopted the automatic backtracking line
search procedure as described in Section 6.3 of [9]. In our
cases, we found that this backtracking algorithm is invoked

only in a few initial iterations, with a negligible increase
in computational cost. For the sake of completeness, we
also implemented the trust-region method (see Section 6.4
in [9]), and we found that the convergence rate was
comparable with that of the backtracking method, but with
a larger cost. So, the results we are going to illustrate, were
obtained by the backtracking procedure,

In Tables I and II, we report the resuits of several numeri-
cal tests concerning the efficiency of the iterative scheme
and the accuracy of the y-formulation for different values
of & and o. Three values of the diffusion parameter v
have been considered: in cach case, the number of
space intervals N has been chosen in such a way that the
boundary layer be correctly represented, The efficiency of
the iterative method to solve (2.10) is measured by the
number of iterations, All the results have been obtained with
Ar=10"max _ .~ (lufI/N) (ie, the Courant number
based on the hyperbolic part was 10%). We report the
number of iterations needed to drive |[res”]|, below 1.10~ "
starting from the -initial guess wy(x)= (1 —x)x, where
|res™|, denote the discrete /2-norm of the residual res” =
—vy(ul, )+ (f{u"}), — g at the interior grid-points of the
domain.

TABLE I1
Accuracy of the Solution of Problem (2.10) for Different Values of § {with Fixed Ratio é/o} and of the Diffusivity v

¥ N é o n-it haek o — a2 Nk e —2pll o ek 5 — #ea |l fi#d v — tex |
102 200 0.0 0.0 11 0.0 0.0 0.40079 107 086880 102
1.0 0.5 19 0.19384 10~* 099016 10—* 0.39334 1077 0.87607 1072
10.0 5.0 31 0.15745 1077 0.95780 103 0.35043 10~ 093914 102
10? 50.0 30 0.12647 103 0.93838 102 0.10494 10~° 0.15600 10!
100 5102 36 0.84447 104 0.913584 10! 0.79356 10~* 09115510~
10—+ 6,400 0.0 0.0 27 0.0 0.0 0.22038 10~ 0.72975 10~
10? 500 15 0.11808 10— 1* 0.15687 103 0.22037 10~¢ 077191 10!
100 5.10% 16 0.11407 10~12 0.16291 102 0.22028 10-° 077177 10~¢
10*  5-10° 15 0.10617 0~ 0.16661 1072 0.21936 10~° 0.77033 10!
10-% 20,000 0.0 0.0 12 0.0 0.0 0.19676 10~ 0.88932
19¢ 5.10° 10 0.70988 10~ 1% 0.30951 19-3 0.19676 10~ 0.88932
0 5100 10 0.70988 1015 0.30951 103 0.19676 106 (.88932
0% 5.10° 10 0.26396 10~ 0.17583 103 0.19676 10~ 0.88932
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The accuracy of the sclution of the y-formulation is
measured by the discrete /2- or {®-norms of the difference
between the solution uj , of the finite-difference approx-
imation to problem (2.10) using N grid intervals, and the
solution u, of the similar spatial approximation to the
original Burgers equation (2.8).

Table I allows us to investigate the sensitiveness on the
x-problem of the parameter o, which measures the steepness
of the function y{s) in the transition region between the
viscous and inviscid states. As theoretically predicted, o has
a negligible influence both on the rate of convergence and
on the final accuracy.
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The sensitiveness of the y-problem to the parameter &
(for fixed ratio &/¢), and the diffusivity v is iliustrated
by TableIl. Tn order to evaluate the influence of the
y-nonlinearity on the overall cost of solving problem (2.10},
we have applied the same iterative method to the solution of
the viscous Burgers equation (2.8). The corresponding
results appear in the rows § = ¢ ={0. The number of itera-
tions is always moderate, and only weakly dependent on 9,
until the cutoff level reaches the order of magnitude of the
viscous term u, within the boundary layer. Note that the
convergence behavior becomes better and better as the dif-
fusivity parameter decreases. This is also true for the exact

. —— 1.
1 a B
ezact solufion ezact solution
u - x(.g) =0 * x(g) =0
| o O<x(s)<s u o D<x(s)<s
x x{s)=a» x x(3)=3s )@DX
X
0.8 . 038 & L . \ \
0.8 T 1 0.8 T 1.
1.
eract solution c
* x(:) =0
o D<x(s)<s +F
u s
x  x(s)=s

0.8

FIG. 2. Comparison between the solutions to the Burgers equation (solid line) and the y-Burgers equation (symbols), v=10"2% N =200: {a) d =1,
0=05,(b) =10 a=50; () 6 =10%, o =5.10% » y(s)=0; O 0 < p(s) <55 x 7{s)=s.
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Burgers problem, and it should be related to the backtrack-
ing strategy. Indeed, solving the exact Burgers equation
without backtracking (i.e., pure Newton method) requires
seven iterations for v =102, 11 iterations for v=10"* and
14 iterations for v=10"%, ie., the convergence rate exhibits
an opposite trend. We conclude that for low-diffusion
problems, the overhead of the y-formulation becomes negli-
gible with respect to the cost of solving the original problem.
As far as accuracy is concerned, the behavior of the errors
are in good agreement with estimate (2.4), which holds for
the solutions of the finite-difference approximations to (2.8)
and (2.10), too [3]. Furthermore, the solution of the
y-formulation of the Burgers equation is a close approxima-
tion to the exact solution for a wide interval of 8.

The y-solutions u% ,, for v=10"2 N =200, and different
values of § (with d/¢ constant), are graphicaily shown in
Fig. 2 in the interval [0.8, 1], together with the exact solu-
tion (solid line). Different symbols are used to represent the
¥-solutions in the inviscid region £2, (stars), in the transition
region £, (circles), and in the viscous region 2, (crosses).
Note that by increasing é one moves the inviscid/viscous
interface toward the boundary layer; however, the interface
region is always across two-three grid points. Furthermore,
except for the badly resolved case, 2¢, corresponding to the
values 6 = 107 and o= 5.107, the matching at the viscous/
inviscid interface appears to be quite smooth.

4. FIXED %-VISCOUS/INVISCID
DECOMPOSITION

The previous results show that the solution of our model
problem is inviscid in most of the domain, except for a
region near x = L. So, it is quite natural to split the domain
into an inviscid region [0, ] (0 <& < L), where a cheaper
hyperbolic problem is solved, and a y-viscous region [b, L]
containing the boundary layer, where the y-viscous problem
is solved. In the rest of the paper we will investigate the
effects of such a domain decomposition. First, in the present
section, we will assume that the interface between the two
regions is fixed and is determined in advance (information
about its position can be obtained by overestimating the
thickness of the boundary layer}. Subsequently, in the next
section we will introduce an automatic detection of the
interface position, which will allow us to move it until an
optimal position is reached.

With the adaptive technique in mind, it is convenient to
reformulate our boundary-value problem in a reference
domain, in such a way that the viscous and inviscid regions
in physical space correspond to a fixed decomposition of the
reference domain. To this end, we fix a family of coordinate
mappings from the physical domain {0, L] to the reference
domain [0, 1], depending upon a parameter 3

Z(x, B): [0, L1x [0, L] — [0, 1]. (4.1)
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In the sequel, we choose

i, 0 x<h,
B, B)={ P 42)

B<x<L,

which defines a linear coordinate mapping in each sub-
domain.

Let b denote the physical coordinate of the interface
point. We select the coordinate transformation in the family
(4.2} by setting

E(x)=E(x, b). (4.3)
Note that we invariably map the interface into the point of

coordinate § in the reference domain.
Problem (2.10) can be written in the new coordinates as

_vx(éx(éxuf)é)‘l_ 6t(f(u))§ =£
for O<é<ioricé<l,
u(0)=u(1)=0,

+a suitable interface condition at ¢ = 3.

As pointed out in the introduction, it is preferable that the
coupling between the inviscid region and the viscous one
takes piace at a point where the solution can be considered
inviscid. Therefore, we assume that the interface point # has
been chosen in such a way that y(&,(&,.u:),} =0 both in the
interval [0, 1) and in a right neighborhood of £ = 1. Thus, at
the interface =1 the proper matching condition is of
hyperbolic type; i.e., only C continuity has to be enforced.
Hence, problem (4.4) can be made precise in the following
domain decomposition problem;

L)), =g 0<E<y, @s.1)
w'(0)=0;
_—vx(éx(fxué/)f)'i_‘fx(f(uV));’,‘:gs %<‘f<1!
u"(3)=u'(3), (45.2)

u’(1)=0,

where u' (=u in [0, ]} is the inviscid part of the solution,
and 4" (=win [4, 1] is the y-viscous part.

Let us consider the numerical approximation of such a
problem. As far as the spatial discretization is concerned,
the domain decomposition makes it easy to use a different
grid in each subdomain. Precisely, we use M + 1 equally
spaced points in the interval [0, 1], and N+ 1 equally
spaced points in the interval [4, 1]. The corresponding
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distribution of grid points in the physical domain depends
on the structure of the coordinate mapping (4.1). Let us
point out that in each subdomain cne could use different
spatial discretization schemes, choosing among the most
appropriate ones for the type of equation to be solved in the
subdomain. For instance, an infinite-order spectral colloca-
tion method is appropriate in the y-viscous region, where
the solution is smooth but with several relevant physical
features (think of the separation bubbles in multidimen-
sional flows), whereas a low order finite volume method is
normally sufficient in the external, inviscid region.

Let us now discuss how to solve efficiently the coupled
problem (4.5.1)-{4.5.2). Two iterative strategies can be
devised-to this purpose. The first approach takes advantage
on the specific structure of the hyperbolic operator in
(4.5.1), which allows information to be propagated only
from the left-hand side to the right-hand side of the domain.
This situation is the scalar analog of a supersonic inviscid
flow. Thus, first one solves problem (4.5.1), obtaining the
exact interface value «/(1); next, one solves problem (4.5.2).
The hyperbolic problem can be solved in a cheap way
by a space marching technique, whereas the y-problem can
be solved by the time-advancing technique presented in
the previous section and discussed therein, The second
approach is suitable for handling moge general hyperbolic
problems, where information propagates in both directions,
as in the case of transonic flows. A time-advancing techni-
que as the one discussed in Section 3 is applied to both
problems (4.5.1) and (4.5.2). The inviscid solution ' is
advanced by one time step on the left domain; next the
current value of u'(3) is passed to the right domain, where
the y-viscous solution is then advanced by one time step.
The procedure is repeated until a steady state is reached. So,
during the iterative method one simultaneously enforces the
differential equation at the interior points of each domain
and the matching condition at the interface. In the sequel,
we will explore the performances of such an iterative
procedure.

We investigated two cases, corresponding to the values
v=10"* and v=10"° We chose #=0.995 in the former
case and #=0.99995 in the latter one. The number of grid
intervals in the inviscid region was fixed to M =35, The
y-parameters were d = ¢ = | in all runs. Table 11 shows the
convergence behavior of the iterative method, and reports
the accuracy of the decomposition as functions of the
number N of the grid intervals in the y-region. We report the
number of iterations needed to drive the [Z-norm of the
overall residual in (0, 1) below 1-10~ " and the norms of
the errors of the y-solution with a very good appreoximation
of the exact solution computed with 20,000 points in the
boundary layer. The behavior of the iterative procedure
is quite similar to what we found in the previous section.
Conversely, a comparable accuracy is obtained with a much
smaller number of grid points, provided the interface is
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TABLE III

Number of Iterations and Accuracy of the Fixed y-Viscous/
Inviscid Decomposition (Problems (4.5.1)-(4.5.2)}, with M =3,
& =o= I, for Different Values of Grid Intervals N in the y-Viscous
Region

v N n-it

e v — w2 N v —ttex o

-4 2 13 057113107 0.25196
2% 13 0.48088 10~° 072974 10!
2¢ 13 0.16819 107 0.11864 107!
27 14 0.21624 10-* 0.62926 102

10-¢ 24 18 0.5738210°¢ 0.25769
23 17 049161 107 0.77336 10~
26 16 0.24291 [0~1° 0.18071 10"
27 15 0.18679 101 0.68390 102

placed as close as possible to the boundary-layer edge.
In these tests, the position of the interface is determined
a priori, but this may be difficult to do in more severe
situations. This remark suggests developing an aulomatic
strategy for finding an optimal position of the interface.

5. SELF-ADAPTIVE 3-VISCOUS/INVISCID
DECOMPOSITION

We now describe an automatic strategy of domain
decomposition, which leads to an optimal position of the
interface point & Our strategy is based on the two following
heuristic requirements: (i} the solution must be inviscid (in
the sense that y(v.)=0) at the interface point; (ii) the
z-viscous region, which contains the boundary layer, must
be as small as possible. Requirement (i) guarantees an
mviscid {although smooth) matching at the interface;
requirement (ii) guarantees that the grid points belonging to
the x-viscous domain are really clustered within the bound-
ary-layer region, thus yielding an optimal resolution. The
previous conditions can be satisfied by requiring that, in the
x-viscous region, the function y(w.. ) be identically zero at a
fixed, small number of consecutive grid points, starting from
the interface. More precisely, denote by x; (i =0, .., M + N)
the grid points in the physical domain, and recall that the
nodes {x,, i=0, .., M} belong to the inviscid region [0, ],
whereas the nodes {x;,, i=M,.., M+ N} belong to the
z-viscous region [, L] (thus, x,,=b). Let N, (0K Ny < N)
be a fixed integer. We require the following property to be
satisfied.

Interface Position Criterion.
problems (4.5.1)}-(4.5.2), then

If & 15 the global solution of

e #{u.)=0at the grid points {x,,i=0, .., M + N,}.
e ¥(u.)# 0 at the grid point x4, . g 45
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Note that in our model problem we expect y(u,.) to be
actuaily nonzero at all the grid points x,, iz M + Ny + 1. As
far as the choice of N, is concerned, let us observe that
No=01s allowed because it matches requirements (i) and
(i1} mentioned above. However, on the discrete level, it is
advisable to choose N> 0 in order to have a “safety” region
around the interface, in which the solution is inviscid. Typi-
cally, N, will be a smail percentage of &, depending upon
the spatial discretization scheme used in the viscous region.

The above criterion can be enforced through the time-
advancing iterative procedure described in the previous
sections. Let #''" be a sufficiently accurate approximation
of the sclution to {4.5.1)-{4.5.2), corresponding to a certain
interface position Y, The function y(x'°) is computed
at all grid points in each subdomain (the second derivative
is approximated consistently with the numerical scheme
used at each grid point). Let us define the integer i * by

P+ 1=min{i=1, ... M+N—1|gu)#£0at x,},

s

(5.1)
and set x* = x;.. Thus, y(«©'") = 0 at all the grid points less
or equal to x*, whereas y(«'9¥)# 0 at the first grid point
larger than x*. Therefore, according to the interface posi-
tion criterion, we choose the new interface position b'™*! in
such a way that x{3%}, = x*. Since x4}, corresponds to
the abscissa £ = 5(1 + Ny/N) in the reference domain, the
interface h1"™’ satisfies the relation

1 N,

S, b‘“w’)z—(l +~), (52)

2 N

which can be uniquely solved for 5% provided x* >
xX..=(Ny/N)L (see Fig. 3). The new value of the interface
defines the new coordinate mapping & = Z(x, 5™*)), hence,
a new grid distribution.

In order to continue the time iterations on the new grid,
one has to transfer the values of 4% on the new grid. This
can be accomplished either (i} by linear interpolation of the
solution on each subinterval of the old grid, or (ii) by intro-
ducing a time-dependent metric, {(x, )= Z(x, b(t)), which
takes into account the grid displacement within the time-
advancing scheme in a natural way {sce, e.g., [ Ref. 107). For
instance, the differential equation (4.5.2) may be replaced by

up+ Eue —vp(S AL e ) + E(flu))e = g,

j<&<l, >0 (5.3)
In our numerical tests, we found the adaptive domain
decomposition based on linear interpolation to be superior
to the time-dependent metric approach in terms of robust-
ness and convergence speed.

Our numerical tests (see below) indicate that the major
dispiacements of the interface occur during the initial itera-
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FIG. 3. Piecewise linear coordinate mapping; interface position
criterion (V= N/10).

tions, Subsequentiy, only minor adjustements of the inter-
face take place. Therefore, in order to optimize the efficiency
of the sell-adaptive domain decomposition technique, it is
advisable to avoid the update of the interface position when-
ever the displacement 4b = |5 — p**'Y| computed by the
Interface Position Criterion, falls below a threshold 45,.,.
We applied the self-adaptive domain decomposition
method with linear interpolation, to the solution of the
same Burgers problem considered in the previous section.
Hereafter we report the results corresponding to the more
severe case, namely v = 1075 The y-parameters were M = 5,
0=0=1,and N,=5{or all cases. In Table I'V we report the
number of iterations and the accuracy for different vailues of
grid intervals in the y-viscous region. In all cases, except the
last one, the initial position of the interface was b, =0.5; this

TABLE 1V

Number of Iterations and Accuracy of the Self-Adaptive
Domain Decomposition, for Different Values of Grid Intervals in
the 7-Viscous Regton, with v=10"%3=0=1, M =5 N,=5

N n-it b "ug N gy ‘I pa "M; N Hex ” x

28 26 099986 0.85209 10~* 0.30688
54 0.999958 0.23308 10~ 0.55750 10!

2° 24 0.99982 0.45781 107 (.23242
53 0999967 0.46172 1o~ 095375102
2 25 099988 0.50897 100 0.26540 [0~
92 0999970 034716 1012 0.29886 102
27{x} 39 0.999977 0.13303 102 0.18490 107
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choice represents a very rough overestimate of the bound-
ary-layer thickness. Conversely, the last row (*) correspond
to the choice bhy=0.9999995; ie, the boundary-layer
thickness was underestimated by two orders of magnitude.
The value of & was determined by enforcing the Interface
Position Criterion. For each value of N, the upper row
corresponds to the stopping criterion 4b,,;, = 10~*, while
the lower row has been obtained with 4b,, = 10~7. This
last value has also been adepted for the case N =27 (*).
Figures 4a and 4b, show the convergence history of the /*
norm of the residual |res|,, and the corresponding dis-
placement of the interface b for the case N =27, Figure 4b
demonstrates that after the first iterations, an essentially

3. a
log|ireslla L
1.
i b
_15. . ‘ |05
V] n 25
3 b
log||res|lz
R 1.
5 b
~15. ) . . 0.5
0 100

n

FIG. 4. Convergence histories {log |ires),) and interface histories (b):
(2) Abpin = 107% (b} Aby;, = 1077,

299

uncontrolled interface adjustment only produces osciila-
tions of the residual, without a significant improvement in
the accuracy. Conversely, in Fig. 4a, we see how a mild
limitation on the interface displacements leads to a good
compromise between accuracy and efficiency. Table TV
shows that the choice 4b,;, =107 gives comparable
results to those obtained in the previous section, both for
convergence and accuracy. The last row of TableIV
demonstrates that our self-adaptive technique works nicely
also if we start from a severe underestimate of the boundary-
layer thickness.

Finally, in Fig. 5 we compare the solution of the
adaptive domain-decomposition problem, for N =27 and
4b,.. =107 (symbols), with the exact solution to the
Burgers equation (solid line) (the small oscillations in the
solid line are due to the single-precision subroutines of our
GKS graphic package). Note that the inviscid part of the
g-solution in the y-region is formed by Ny=35 points, as
required by the interface condition. The accuracy of the
y-solution is quite good. For the sake of comparison, we
tried to run the same problem on the self-adaptive ODE
collocation code COLSYS, available through Netlib (see,
e.g., [117), but we did not obtain convergence with as many
as 7000 grid intervals. If we consider the less severe situation
of the diffusion parameter v=10"* then COLSYS con-
verges in 31 iterations with a final grid of 640 intervals,
whereas the present technique converges (with the same
accuracy) in 28 iterations with N =64 grid intervals. Thus
our results in one dimension look encouraging for the
extension to multidimensional problems.

.99999
exact solution
* x(s)=10 ¥
o D<x{a)<s 3
v x x(a)=s
4
0.99995 L_ . .
0.99995 99999

x

FIG. 5. Comparison between the exact solution to the Burpgers
equation (solid line) and the solution of the yx-viscousfinviscid adaptive
methed (symbols), lor v=10"% x ¢{s}=0; O 0 < y(s) <5, x z(s)=5s.
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6. CONCLUSIONS

A recently proposed formulation of the viscous/inviscid
coupling, termed y-formulation has been applied to the
solution of the Burgers equation. In such a formulation, the
equation is modified in such a way that the viscous terms
arc neglected in dependence of their magnitude. This yields
a natural decomposition of the domain into a viscous region
and an inviscid one. We have shown that the modified
y-cquation can be solved on a single domain at a cost
comparable to the cost of solving the original equation,
despite the addition of a nonlinearity. Furthermore, we have
considered a domain decomposition method, based on the
7-formulation, by splitting the original problem into an
inviscid Burgers equation and a y-viscous Burgers equation;
an efficient iterative algorithm which alternates the solution
on the subdomains is investigated. An interface position
criterion is proposed to adjust the domain decomposition
according to the indications of the y-formulation, in such a
way that the viscous/inviscid interface is automatically
placed near the boundary-layer edge. This yields an optimal
resolution of the boundary-layer structure.
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